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The general solution for low-Reynolds-number flow about an ellipsoid is derived by 
the singularity method and by representation in ellipsoidal harmonics. It is shown 
that, as in potential flow, the focal ellipse is the image system for the ellipsoid. A 
simple transformation which resembles a step in the derivation of the Dirichlet 
potential is introduced and its implications are explored. This transformation converts 
the velocity representation for an nth-order ambient field into that for the (n+ 1)th- 
order field. The method furnishes an explanation for the invariance of the domain 
of the singularity distribution (the focal ellipse) with respect to the ambient field. 
F a x h  relations for all multiple moments for arbitrary Stokes flow are derived in 
both integral and symbolic operator forms. 

1. Introduction 
A strategy for calculating the velocity field about an ellipsoidal particle in 

low-Reynolds-number flow is presented here with a view to applications in modelling 
of particulate suspensions. The somewhat tedious nature of the computations, 
particularly when compared to analogous computations for spheres, may discourage 
some readers but we see the present effort aa difficult but necessary extensions of the 
extensive literature on the hydrodynamics of spherical particles. This work was 
motivated by three concerns - two originating from modelling efforts for particulate 
suspensions and one originating from a fundamental question on the existence of 
certain velocity representations for Stokes flow. 

The first motivation arises from the fact that non-spherical particles are encoun- 
tered in many suspensions, with shapes ranging from disks (clay minerals) to slender 
bodies (stiff fibres and macromolecules). The rheological and dynamic behaviour of 
such suspensions, because of particle anisotropy, encompass a much richer class of 
phenomena than that exhibited by suspensions of spheres. Studies of model 
suspensions of spheroids (Giesekus 1962; Brenner 1972; Hinch & Leal 1972) have 
elucidated the role of hydrodynamic forces on the orientation distribution and 
consequently the bulk rheology. 

The second motivation is a consequence of the observation that almost all models 

t Permanent addresa : Department of Mathematics, Sri Venkateswara University, Tirupati 
517502, India. 
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that incorporate non-sphericity, ranging from disks to needles, may be viewed as 
degenerate ellipsoids. Furthermore, the ellipsoid has received additional attention in 
the past as a relatively simple example of a non-axisymmetric shape (Hinch & Leal 
1979) and also as a simple example of a particle with orthotropic symmetry. Past 
work involving ellipsoids of revolution and other degenerate shapes, has taken 
advantage of the simplifications due to axisymmetry. However, in problems where 
the general velocity representation is required in its full expansion, either because 
of the complexity of the ambient velocity field or because of the symmetry-destroying 
presence of multiparticle hydrodynamic interactions, it is more efficient to solve for 
the general ellipsoid and obtain the desired result by reduction. Somewhat ironically, 
this efficiency is gained, as shown in the text, because for the ellipsoid one has at hand 
the use of the full permutation symmetry group over the geometric parameters that 
define the particle shape. This technique is lost when degeneracy occurs in the 
geometry. 

A general velocity representation is not essential in the development of the theory 
for dilute suspensions. Important entities such as the force, torque, translational and 
rotational velocities and stresslet for a single particle in arbitrary Stokes flow are all 
directly available or latent in the classical works of Oberbeck (1876) and Jeffery 
(1922). The procedure for extracting these entities by the Lorentz reciprocal theorem 
is discussed in Rallison (1978) and Brenner & Haber (1983). In contrast, a general 
representation is essential in the computation of hydrodynamic interactions in 
studies of non-dilute systems. Examples include studies of sedimentation rates, 
theories for the diffusion coefficient, calculation of stability ratios for colloidal 
coagulation (Zeichner & Schowalter 1977) and analyses of the secondary electro- 
viscous effect (Russel 1976). For example, the general representation could be used ar 
the basis set for the boundary collocation method of Gluckman, Pfeffer & Weinbaum 
(1971). Problems involving arbitrary particle orientations are now solvable, thus 
extending a method that was originally implemented for stream functions and 
axisymmetric flows (see also Liao & Krueger 1980 for axisymmetric flow past two 
spheroids). 

The final motivation for the present work originates from questions raised by 
Chwang & Wu (1974,1975) in their seminal work on the singularity method for Stokes 
flow. The essence of their work is that for a surprisingly large class of problems, the 
disturbance velocity field produced by axisymmetric shapes such as prolate spheroids, 
may be constructed from rather simple line distributions of fundamental singularities 
(Green functions). These authors show by direct evaluation, the types and region of 
distribution required for various boundary-value problems and, by solving integral 
equations, the particle shape (if any) associated with given distributions. For a 
number of problems, an interesting observation was made that for a fixed shape, 
although the singularity type varied, the region of distribution did not depend on 
the boundary condition. Finally, for a given particle shape, the method does not 
answer the question of whether a simple singularity solution exists nor does the 
method provide an a b  initio procedure for determining the region of distributi0n.t 
These questions remain as unsolved problems. 

The solution strategy presented here for ellipsoids produces simultaneously both 
the singularity form and a representation in ellipsoidal harmonics with the latter 
recognizable as generalizations of the classical solutions of Oberbeck (1876) for 

t In a private communication, Professor Wu has constructed specific counter-examples such as 
star-shaped regions for which it is readily shown that simple image systems do not exist. 
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translation, Edwardes (1892) for rotation and Jeffery (1922) for a linear field. (The 
equivalence of the singularity form and these three classical solutions has already 
been established in Kim 1986 by direct transformation of the classical solution into 
the singularity form.) The present work establishes for the general ellipsoid both the 
singularity type and the invariance of the region of distribution of singularities. The 
proof for an arbitrary shape eludes us at  this moment but our approach offers some 
clues that will be pursued in future work. 

The work is presented in the following order. The ambient field is represented in 
the vicinity of the ellipsoid by its Taylor series. Thus the general solution is obtained 
by first solving for the disturbance field induced by an nth-order ambient field. This 
solution is presented in both the singularity form and also in terms of the ellipsoidal 
harmonics. Clearly, singularity representations satisfy the governing equations - the 
only concern is the boundary condition a t  the surface of the ellipsoid. Not surpris- 
ingly, it turns out that boundary conditions can be evaluated more readily in 
ellipsoidal coordinates. Thus, the key step in the solution procedure consists of 
transformation between singularity and ellipsoidal-harmonic representations. The 
required expressions are presented for both the scalar potential and the velocity. 
(Thus our work is also applicable to the Laplace equation.) 

In the third section, the solution for the (n+ 1)th-order ambient field is rederived 
by a homotopy on the solution for the nth-order field. We introduce this terminology 
because one solution is obtained from the other by performing an integral over a new 
parameter (the homotopy parameter) that rescales the particle size. It is shown that 
the homotopy changes the density function but not the region of the singularity 
distribution. The technique is also used to derive the Faxen relations for arbitrary 
Stokes flow for all multipole moments. In the fourth and final section, the utility of 
the method is demonstrated by solving for the disturbance velocity generated by an 
ellipsoid in a quadratic flow field. 

2. The general solution 
We consider the creeping motion of an ellipsoidal particle in a general ambient 

velocity field uw(x). The coordinate system is chosen so that the equation for the 
surface of the ellipsoid is given by 

2' y' 22 -+-+- = I ,  a >, b 2 c. 
a2 6' c2 

The velocity field u and the pressure p satisfy the Stokes equation and the equation 
of continuity for incompressible flow 

-Qp+pV% = 0, (2) 

v*u= 0, (3) 

where p is the viscosity. We shall employ the disturbance velocity, so consequently, 
the boundary conditions on u are that it vanish far away from the particle and at 
the particle surface, 

u = - oW(x), (4) 

where u"(x) satisfies the same equations of motion and is regular inside the particle. 
Physically, u"(x) is the ambient flow field about the particle and its value when 

x is within the particle is the velocity at  that point in the absence of the particle. 
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In general, such fields are regular in the region occupied by the particle so we may 
represent them on the surface of the ellipsoid by a Taylor series. Since the governing 
equations (2) and (3) are linear, we proceed by solving for the disturbance field that 
satisfies the boundary condition for a specific term in the Taylor series and obtain 
the general solution by a summation over all such solutions. Thus, we need only 
examine the nth-order ambient velocity field, 

’? = Hikl  k t  ... k n x k l x k p  Xkn’ 

where x is the position vector. The summation convention is used for repeated indices 
and bilevel indices are used since the number of indices varies with n. The tensor of 
rank n +  1, is the result of taking the nth spatial derivative of v? at the origin. 
(Caution: if the ambient field is that driven by a singularity placed nearer to the origin 
than the furthest point of the particle, the Taylor series will not converge at all points 
on the particle surface. For this case, an analytic continuation is needed - the 
reference point for the Taylor series should be chosen so that all points on the particle 
lie within the radius of convergence.) 

The solution to this problem will be presented first in the singularity form and then 
in terms of ellipsoidal harmonics. The fundamental solution of the Stokes equation, 
i.e. the solution to 

v*u = 0, 

i s p  = -V(41tlx-x’l)-~ for the pressure and a Green’s dyadic vu = 4,(x-x’)/(87tp) 
with the Oseen tensor defined by 

Our singularity expressions may appear complicated, but their simple nature is 
revealed if they are considered in relation to the solutions derived by Chwang & Wu 
(1975) and Chwang (1975) for prolate spheroids. For spheroids, the image system is 
the line segment between the foci on the axis of symmetry. For ellipsoids, it  is the 
focal ellipse. For spheroids, the required singularities for an nth-order field consist 
of the (n- 2m)th derivatives of I and V 2 1  where m = 0,1, . . . , [!jn].t Thus, an nth-order 
ambient field with n even (odd), induces a distribution of all even (odd) multipole 
moments up to the nth moment inclusively. The same set of singularities is used for 
the ellipsoid so the disturbance velocity for an (n-1)th order ambient field is 
explicitly 

where 

aE = (a2-c2)t, b, = (b2-c2):, 

The pressure p is obtained by an identical distribution of the fundamental pressure 
t This pattern may be inferred from the earlier results. The solutions in Chwang & Wu (1975) 

and Chwang (1975) correspond to n = 0,1,2. The result for arbitrary ~t is not given. 
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field. The constant tensors P give the strengths of the distributed multiple moments. 
The first two, 4 and qk, are the force and stress dipole. The precise relation between 
the P ' s  and the multipole moments taken about the particle centre is examined in 
93. For now, we simply note that the solution method includes a procedure for their 
evaluation. Finally, the focal ellipse E(x'), 

x'2 ' 2  

a i  b i  
-+Y=l ,  z = o ,  

is the degenerate elliptical disk in the family of ellipsoids that are confocal to the 
particle ellipsoid. Their role as the image system in potential flow is discussed in Miloh 
(1974).  

We shall also derive an alternative form of (5) expressed in terms of the ellipsoidal 
harmonic 

with d(t )  = [(az+t) (b*+t)  (c2++)]f,  and the ellipsoidal coordinate A defined as the 
positive robt of 

22 
x2 +- y2 +-= 1 .  

aa+A b2+A c 2 + A  

This alternative solution is 

There is a summation over j and the notation a, for j = 1 , 2 , 3  has been introduced 
for a, b, c .  (For n = 1 and 2,  this form is precisely the classical solutions.) 

The harmonics x ( A )  and 51 (the Dirichlet potential) that appear in the solution of 
Oberbeck and in Happel t Brenner (1973) are proportional to Go and G,: 

x = abcGo, 51 = xabcG,. 

We now show that the two solutions, ( 5 )  and (7), are equivalent and that they satisfy 
the appropriate boundary conditions. 

2.1. Tranafomnationa for ellipsoidal h a m n i c s  
We first establish the singularity representations for the ellipsoidal harmonic Gn. We 
define 

dA(x'), (8) 
H ,  = j,-- !12,-l 1 

2xa,b, Ix-x'l 

and show that (9) 

This also establishes that (7, is a harmonic. 
(Equation (9) was conjectured by Mr S. Y. Lu of our department and established 

by the first author by mathematical induction.) For n = 0 ,  (9) is equivalent to the 
singularity representation for x ( A )  and follows. as an application of Gauss' law. The 
case n = 1 has also been derived previously (Kim 1986). Therefore, we assume that 

18 FLM 178 
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(9) holds for n and show that this in turn implies that it holds for n+ 1. To do this, 
we first establish the following relations : 

ri 

Hn+l(x; 1) = (2n+ 1) I: U ~ ~ + ~ H , ( X ;  u)du. 

The parameter u in Gn(x; u) and Hn(x;  u) denotes that the particle size has been 
scaled with u, i.e. a, b, and c are replaced by m, ub, and uc. The original ellipsoid 
corresponds to u = 1. 

These relations are verified by direct integration. For example, (10) is obtained in 
the following manner: 

where w(u) = h/uz. The order of integration is exchanged so that the double integral 
is performed over the region h < 7 < 00 and w-l(7) < u < 1, with 

w-1(7) = (- 
Coisequently , 

U ~ ~ + ~ G , ( X ;  u) du = ( W - ’ ( ~ ) ~ - U ’ ) ~  udu 

and the integration with respect to u leads to (10). Analogous steps may be used to 
derive (11). 

The induction for the case n+ 1 from the case n is accomplished by u-integration 
of both sides of (9) with weights chosen as in (10) and (1 1). The result is 

which completes the proof. 

2.2. Velocity representation in ellipsoidal coordinates 
The singularity solution (5 )  may be rearranged into (7) by using the following 
identities involving the Oseen tensor : 

1 vqx - x’) = - 2 v v  - 
1x-xII ’ 

The last equation follows from an integration by parts. 
From (7) it is clear that the evaluation of o on the ellipsoid surface requires 

knowledge of the values taken by anGn and P I G n  on the surface. (When the tensorial 
subscripts are obvious the notation will be simplified by using an as the nth 
derivative.) These derivatives are obtained by successive application of Leibnitz’ rule, 
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with the additional simplification that the integrand of G, evaluated at A vanishes 
(by definition of A). Thus 

2 2  y2 2 2  
with F = -+-+-- 1, 

a P-l dt 
aG, = 2nzk1 [A (k - 

u2 + t ) A (t ) ' u 2 + t  b2+t  c2+t 

Fn-2 
a2G, = 4n(n- 1) z 

until 

(a 9 k2, k,, ..., k2, for term shown). 
At the summation index m, there are n!/(2'"m!(n-2m)!) terms corresponding to 

all possible permutations of {k ,  . . . k,} in the representative term. The key idea is that 
on the ellipsoid surface, A = 0, the definite integrals become numerical constants that 
depend only on the shape of the ellipsoid. Thus anG, reduces to a polynomial in x 
of degree n. 

The velocity expression also involves terms of the form W l G ,  which we now 
proceed to evaluate at  the ellipsoid surface: 

At the surface A = 0, 

Thus the leading-order term in (16) is not of the form specified in the boundary 
condition for the (n- 1)th-order ambient field. In  other words, the proposed velocity 
representation will have the proper behaviour at the ellipsoid surface if and only if 
this (n+ 1)th-order field is cancelled. There are only two such terms in the velocity 
representation of (7). They occur in the second and third terms when m = 0, i.e. 

-1 

-z, P G ,  = 2,(n- 1) ! zt z, zkl . . . zkn-l ([n:=, uiU] d(0) [ il $1) + . . . , 

In  the second equation, a! may be eliminated so the two unwanted terms cancel each 
other. Thus, the velocity field evaluated at the surface of the ellipsoid is in fact a 
polynomial in x of degree (n- I) .  The lower-order fields (with the order successively 
decreasing by two) may be eliminated by repeated use of the preceding argument, 
i.e. by mathematical induction. Thus the velocity may be expressed as in (5) or (7) 
as claimed. 

The last step in the solution procedure requires the determination of the P in terms 
of the known H, the gradients of the ambient field. This final step is accomplished 
by inverting the set of linear equations for the unknown tensorial coefficients. The 
symmetry in the ellipsoid geometry decouples the system so that the lower-order 

18-2 
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cases n = 1,2,3 may be inverted analytically, as shown later for the quadratic 
ambient flow field. 

3. Homotopy 
Equations (10) and (11) are key steps in the derivation of the velocity represen- 

tation. Therefore, it  is not surprising that the velocity field also satisfies a similar 
identity. If we define 

then Jn+l(x; 1)  = (2n+1) u~~J,(x; u)du (n = 1,2,3, ...), (19) 

where again, the parameter u denotes that the ellipsoid dimensions have been rescaled 
by u. The derivation is analogous to the discussion subsequent to (11) .  The 
intermediate expression, 

with u-l(E) = (z ta/ai+y'2/bi):  as before, leads to the final result after the u- 
integration is performed. 

Equation (20) shows the explicit relation between f(n+l) and f,. If the domain of 
the singularity distribution E(u)  at a given u is completely contained within E(1), 
then the domain of the singularity distribution will be invariant in homotopic 
integrals such as that used in (19). This observation for ellipsoids raises the question 
of whether a general class of particle shapes may be constructed for which the velocity 
representation for Stokes flow may be generated by the homotopy method employed 
here. Conversely, one could also construct concave shapes for which the homotopy 
would alter the shape of the singularity domain thereby constructing shapes for which 
both the singularity type and domain would vary with the ambient field. 

3.1. The Fax& relations 
The Lorentz reciprocal theorem implies that the Faxen relations for the multipole 
moments have the functional form of the singularity distribution, (5) .  We introduce 
the resistance tensors 2 which fix the linear relation between the P and H:  

q k l  ... kn-nm-1 = ' ( j k ,  ... kn-2m-l) ( i l l  ... In-1) H i I ~ . . .  In-1 (m = 0,1,2,  ... [!j(n-l)]) 

As shown in Kim (1985) the singularity solution implies that the Faxen law for the 
multipole moments may then be expressed as 

The comma after the subscriptj denotes derivatives. Equation (21) for the Fax& 
laws for the arbitrary multipole moment extends the results presented in Kim (1986) 
with the earlier results for the force and dipole (torque and stresslet) corresponding 
to the cases n = 1 and n = 2 (antisymmetric and symmetric parts). Equation (21) 
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may also be rewritten using the symbolic operator approach of Brenner & Haber 
(1983) : 

where the operator is defined formally as a power series in D2 with 
D2 = a8 a8/aza + b2 ae/ays + c2 a2/az2. This alternative form is particularly useful in 
situations where the ambient field is expressed analytically. 

The derivation of (22) from (21) follows the familiar theme-we derive the 
lowest-order caw and finish the proof by using the homotopic integral and mathe- 
matical induction. Therefore, we first show that 

The right-hand side of (23) may be rearranged into two terms, the first expressed in 
terms of om and the second in terms of V2um as follows. The D8 operator is rewritten 

a2  a2 
D2 = f)a+c2V2, with D2 = a & s + b & v .  

If we restrict the operand to biharmonic functions such as uco and its gradients, then 
D2k = f)2k + cekf)Bk-2V2 and 

V2 
sinhD sinhf) kf)2k-2 

D 
T+c2 

(2k+1)!  
-= 

Equation (23) now follows by matching the terms in vm and V2vm, i.e. it  can be shown 
that 

These two identities follow aa limiting forms (for an elliptical disk) of (26) and (27) 
of Brenner (1966). 

The general result (22) is now derived by establishing that 

The left-hand side of (26) may be generated by successive sequences of homotopic 
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integrations as in (19). The same procedure must be applied to the right-hand side. 
Since D2(u) = u2D2(1), we find that 

2n(k+n-1)!D2k-2 u 
( )du 

kml (k- l ) !  (2k+2n-2)! 

O0 2 " ( I ~ + n - l ) ! D ~ ~ - ~  U2n+2k-2 du 
k-1 (k-1)!(2k+2n-2)! = x  

= x  - _ -  ___ 
- (A 13D)n ("":: ") O0 2"+l(k+n)! D2k-2 

k-1 (k-l)!  (2k+2n)! 
as required. 

In summary, the Faxen relations presented in the symbolic operator form in (22) 
extend the ideas in Brenner t Haber (1983) to higher-order multipole moments. Their 
results for the force and dipoles are recovered for n = 1 and n = 2 respectively. As 
noted by these authors, the solutions for the higher-order fields are not required in 
the derivation of the Fax& relations for the force (or translational velocity), torque 
(or rotational velocity) and stresslet. However, as shown in the present work, such 
solutions are useful in the derivation of the Faxen relations for the quadrupole and 
higher-order moments. 

3.2. Distributed and centred moments 
The Pare  related to but not identical with the multipole moments about the ellipsoid 
centre. The latter are defined as the coefficients in the multipole expansion at the 
centre. In  fact, the distributed singularities of ( 5 )  may be rewritten as an infinite series 
expansion about the centre since (26) applies equally well with oOO(x') replaced by 
/(x-x'). We collect all contributions to the (n- 1)th multipole moment in the form 
of 

D2m"15, kl .._ kn-am-1 (x-x'). 

Thus the (n- 1)th multipole moment in the (n- 1)th-order field is 

[&n-l)] 2m(n-2m-1) (2n-4m)! (n-m)! 
(b'n)jxkl ... xkn-ld#= 

m-0 (2n - 2m) ! 

so that even (odd) multipole moments about the centre are equal to the corresponding 
distributed moment plus a correction term that contains all lower order even (odd) 
distributed moments. 

4. Quadraticflow 
We now consider the disturbance field produced by a stationary ellipsoid in a 

quadratic field, v r  = Hijkx5xk, in order to illustrate explicitly some of the general 
statements of the preceding section. In particular, the use of more than one type of 
multipole moment first occurs a t  this level. 

Without loss of generality, we assume that 



The right-hand side of (29) is summed over the indicesj, k and 1 but not i. The K's 
are elliptic integrals defined by 

and so forth. 
We now examine (29) in the light of earlier statements. The velocity representation 

is a quadratic on the ellipsoid surface. The unknown Gk, are related to the known 
Ht,k by a linear system of equations which is obtained by matching the coefficients 
in x, xk. In  principle, the p1 are determined after the pl,k,  using the fact that the terms 
of degree zero must vanish on the right-hand side. However, there is a more direct 
method since the force on the ellipsoid in a quadratic field must be (Brenner & Haber 
1983) 

-1 

< = -? (1: d(t)+a2Kl) dt (aBHll,+bsH,,,+ceHl,,), 

with P, and P, obtained by successive cycling of (a, b, c )  and (1,2,3). 
The algebraic structure of (29) is as follows. Because of (28), and continuity, H6,k 

and have only 18 components of interest and these components are subject to 
three constraints. However, further reduction of the linear system may be achieved 
because of particle symmetry. The system is actually four decoupled systems - one 
3 x 3 and three 5 x 5 systems. 

The 3 x 3 system is obtained by considering the ambient field 

This field requires the use of just (I& + P,,,), (P,31 + PZl3) and (P,,, +P,,,). The three 
equations are obtained by equating the yz-, m- and q- terms in the x, y and z velocity 
components. 
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We now consider one of the 5 x 5 systems. The ambient field of interest is 

(31) I v," = H I 1 1  x2 + H 1 2 2  ye + Hi33 z2, 

vy" = (H212 + H221) XY, 

= (H313+H331) 2z, 

which requires just e11,e22,&33, (&12+P221) and (e13+e31) plus 4, the hydro- 
dynamic force in the 2-direction. The five equations are obtained by equating terms 
in x2,  ye and z2 in the 2-component of the velocity, terms in zy in the y-component 
of the velocity and terms in 2% in the z-component of the velocity. Since 
Hlll + Hzlz + = 0 and since z2 may be related to y2 and z2 on the ellipsoid surface, 
the problem may be further reduced to a 4 x 4 system of equations. 

The two remaining 5 x 5 problems are isomorphic to the one just considered and 
are obtained by cycling the dependence on (x,y,z) and (a ,b , c )  in the solution 
procedure for (31). The cyclic group of order 3 may be employed to formalize the 
symmetry argument used by Oberbeck (1876) for the translational problem. There, 
the solutions for translations in the y- and z-directions result from the same cyclic 
operations on the solution for translation in the 2-direction. Thus the complete 
solution requires the solution of only one problem. Here, the algebraic structure is 
more intricate. One subsystem, the 3 x 3, is invariant under the group while the three 
5 x 5 are transformed into each other. (Explicit solutions of (30) and (31) are available 
from the first author.) 
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